
International Journal of Theoretical Physics, Vol. 33, No. 12, 1994 

Does Noncommutative Geometry Predict Nonlinear 
Higgs Mechamsm? 
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It is argued that the noncommutative geometry construction of the standard 
model may predict a nonlinear symmetry-breaking mechanism rather than the 
orthodox Higgs mechanism if there is much heavy generation in addition to the 
lightest generations. Such models have experimentally verifiable consequences. 

The unification of  electromagnetic and weak interactions is one of the 
biggest achievements of theoretical physics. It is usually referred to as the 
Glashow-Weinberg-Salam model (GSW model). This model successfully 
described all known experiments involving electroweak interactions. We 
believe that the existence of  the Higgs particle and the missing members of  
the third family will soon be confirmed. The situation is far less satisfactory 
from the theoretical point of view: the model contains too many free 
parameters and the symmetry-breaking sector is put in ad hoc. String 
theory (Stadkowski, 1990a) may provide us with an explanation for the 
nature of  (light) generations (Mafika and Stadkowski, 1989, 1990; Stad- 
kowski, 1990b). Recently, new ideas have been put forward (Connes, 1990; 
Connes and Lott, 1990; Kastler, 1991, 1992; Coquereau et al., 1991, 1992; 
Chamsedine et al., 1993a; V~rilly and Garcia-Bondia, 1993) that make use 
of  Connes' noncommutative geometry (Connes, 1983). Connes managed to 
reformulate the standard notions of  differential geometry in a pure alge- 
braic way that allows one to get rid of  continuity and differentiability. As 
there is a geometrical interpretation of  gauge theory in terms of  fiber 
bundles and connections on them, one can also apply this formalism to the 
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GSW model (Connes, 1990; Connes and Lott, 1990; Kastler, 1991, 1992; 
Coquereau et al., 1991, 1992; Chamsedine et al., 1992; Wtrilly and Garcia- 
Bondia, 1993) and to grand unification (Chamsedine et al., 1993a). The 
notion of spacetime manifold M described by the (commutative) algebra of 
functions on M can be generalized to (a priori) an arbitrary noncommuta- 
tive algebra. Fiber bundles become projective modules. A properly general- 
ized connection can describe gauge field on these algebraic structures. The 
reader is referred to Connes (1983, 1990), Connes and Lott (1990), Kastler 
(1991, 1992), Coquereau et al. (1991, 1992), Chamsedine et al. (1993a), and 
Vfirilly and Garcia-Bondia (1993) for details. This allows one to incorpo- 
rate the Higgs field into the gauge field, and the correct (leading to 
spontaneous symmetry-breaking) form of the scalar potential is obtained in 
a natural way, provided there are at least two generations of fermions! This 
sort of unification determines also the (classical) value of the Weinberg 
angle. One can add QCD to the model in such a way that the full standard 
model is reproduced. The Lagrange function one gets has the orthodox 
form with the above predictions. Of course, these predictions may get 
renormalized after quantization. Toy models suggest that it is difficult to 
keep the relations intact. Probably one should invent a noncommutative 
generalization of quantization in order to exploit the noncommutative 
character of the approach. 

Here we would like to point out that the noncommutative generaliza- 
tion may predict a nonlinearly realized spontaneous symmetry breaking, 
known under the acronym BESS (breaking electroweak sector strongly) 
(Cosalbuoni et al., 1987; Cvetic and K6gerler, 1989, 1991; B6nish and 
K6gerler, 1992). Our main argument for BESS can be stated as follows. The 
noncommutative version of the standard model predicts the required form 
of the Higgs sector, but the fermion masses (Yukawa couplings) and the 
number of generations Ng are free parameters. There must be at least two 
generations, but why not, say, 127? It is natural to suppose that Ng is big 
or even unlimited and that the fermion masses emerge as a result of 
interaction and the spacetime structure. We see only the lightest fermions 
because the energy at our disposal is not high enough. The Higgs particle 
has not yet been discovered. Does it really exist as a physical particle? We 
will show that it can be thought of in the limit mH ~ ~ .  The main argument 
against BESS is that such models are nonrenormalizable. Noncommutative 
geometry says that our notion of spacetime is only an approximation (an 
effective electromagnetic spacetime). The correct description is in terms of 
algebras. Should we not give up the requirement of renormalizability? BESS 
models can certainly lead to physical predictions (Cvetic and K6gerler, 1989, 
1991; B6nish and K6gerler, 1992). General relativity provides us with 
analogous arguments (Chamsedine et al., 1993b). 
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We will consider a noncommutative space (A, h, D, F) where A is an 
involutive algebra, h a Hilbert space, D an unbounded self-adjoint operator 
on h (Dirac operator), and F a grading such that A is even and D is odd. 
F will provide us with the 7s matrix (Connes, 1983, 1990; Connes and Lott, 
1990; Kastler, 1991, 1992; Coquereau et al., 1991, 1992; Chamsedine et al., 
1992a; V/trilly and Garcia-Bondia, 1993). We shall choose A to be the 
algebra that corresponds to the two-point extension of the spacetime 
(Connes, 1990; Connes and Lott, 1990; Kastler, 1991, 1992; Coquereau et 
al., 1991, 1992; Chamsedine et al., 1992a, 1993b; V~.rilly and Garcia- 
Bondia, 1993): 

A = C~(M) | (1) 

where C~(M) is the algebra of functions on the spacetime (spin) manifold 
M and A2 is the direct sum 

A 2 = H @ C (2) 

of quarternions H and complex numbers C. The Hilbert space h has the 
form 

L 2(S(M)) (~ C ug (3) 

where L:(S(M))  denotes the Hilbert space of the square-integrable spinors 
[completion of the sections of the spin bundle S(M)]. The total fermion 
space has the form 

Lz(S(M)) | CTNg (4) 

This corresponds to the fermions written in the form 

]/L 
eL 

~9= dL = O R  
eR  

bl R 

dR 
where each entry describes Ng ordinary ferrnions. So far, we have only 
considered the electroweak sector of the standard model. The QCD part 
should be added "in a commutative way" because the SU(3)r is an 
unbroken symmetry (Connes, 1990; Connes and Lott, 1990; Kastler, 1991, 
1992; Coquereau et al., 1991, 1992; Vdtrilly and Garcia-Bondia, 1993). To 
this end one has to consider the algebra 

.4 = C~(M)  | A,. = C*(M)  | As | (C • C 3 • 3) (6) 
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The additional C term introduces an extra U(1) symmetry, the price one 
has to pay for having SU(3)color symmetry (no appropriate Higgs fields). 
The symmetry is now U(1)1 • SU(2) • U(1)2 x U(3). To reduce it to the 
standard one, one has to demand that the U(I)I part of the associated 
connection Y is equal to the trace part of the U(3) term and that the U(1)2 
part is equal to - Y  (Connes and Lott, 1990). A more elegant but 
equivalent treatment can be found in Vfirilly and Garcia-Bondia (1993). 
This defines the algebraic structure of the full standard model. The Dirac 
operator has the form 

where 

M = 

= ( 3  |  75 @ M*'] 
D \ y s |  d |  ] (7) 

0 0 0 0 0 0 0 

0 0 0 0 m~ 0 0 

0 0 0 0 0 m. 0 

0 0 0 0 0 0 ma 

0 m~ 0 0 0 0 0 

0 0 m. 0 0 0 0 

0 0 0 mid 0 0 0 

(8) 

and the entries me, mu and m d are positive-definite N • Ng matrices. The 
Yang-Mills functional is defined by a representation n: f~*(A)~B(h) of 
the differential algebra f2*(A) in the Hilbert space h in terms of bounded 
operators on h 

n(ao dal . . ,  dak) = aoik[O, al] �9 �9 �9 [D, ak] (9) 

by 

LyM= ~ Tr~o((rcz(0))D-4) = ~ f  d4x Tr(tr(rt2(0))) (10) 

where 0 is the noncommutative curvature form, 0 =dp  + p 2. Here Try,, Tr, 
and tr denote the Diximier trace, trace over the matrices, and trace over the 
Clifford algebra, respectively (Connes, 1983, 1990; Connes and Lott, 1990; 
Vfirilly and Garcia-Bondia, 1993). We have 

IAI |  0 0 y s |  

P =  "|ys| X2| 0 0 (I1) 

l 00 0 -~ i2 |  0 
0 0 ./icolo r | Id 
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.g3 ~ _ iX2~ 
~ ,=  ~ , + i ~  ~ - ~  / 

(12) 

.~2 = iA  ~ = Tr ~co,or (13)  

and W + = (1/x/~)(.~ ~ -  i.~2), Z = (1/x/~)(2~ + .~3), etc. The tilde is used 
to denote gauge fields of the corresponding algebras. After elimination of 
auxiliary fields and Wick-rotating to Minkowski space, we get 

= f{ �88  (F I F 1~'~ + F 2 F 2~ -4- F" Fc~"q LVM J - " g  " , - - l t v - -  - -  - - l t v - -  - -  - - u v  - -  I 

+ �89 Tr(MM +) laH + A, H - H*A212 

- �89 2 - (Tr MM+)2)(HH + - 1) 2} d4x (14) 

The fermionic action is given by 

LI= <•lO + rc(p)]~> 

= . I ( ( L t ~ L  + ~Rt~'R + ~LH| + ~RHt| d4x (15) 

where we have included the n(p) term in/~. 
Let us look more closely at the full Lagrangian, L = LvM + Lr. It has 

the standard form except for the Ng factor in front of the gauge field kinetic 
terms that comes from the trace over generations. The analogous term in Lf 
give the sum over generations. We know that there are only three light 
generations of fermions, but is that all? We should count all generations in 
L! This means that the coefficient in front of the F, vF uv terms should 
depend on Ng and, in fact, give us information about the total numbers of 
generations because it is absent from the fermionic part! This is not true. 
The orthodox normalization is correct. We should normalize the Diximier 
trace in (10) so that the coefficient Ng disappears. The simplest and most 
natural solution is to normalize Tr so that Tr IdNg = 1 (Chamsedine et aL, 
1992a, b). This ensures also that Trio is always finite. There is a natural inner 
product on the algebra of complex square matrices given by Tr(AB+). If  
one applies the Cauchy-Schwarz inequality to this inner product, one gets 

Tr(MM*) 2 -< (Tr MM*) 2 (16) 

We cannot ensure the correct sign of the Higgs mass term without the 
above normalization. The normalization of the trace Tr leads to 

Tr(MM*) 2 < Ng(Tr MM*) 2 (17) 

This means that for large Ng the coefficient K = Tr(MM*) ~ -  (Tr MM*) 2 
may be very large. In fact, it is possible that K--+ ~ if the number of heavy 
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generations is unlimited. This forces the condition HH* = 1 in the Lagran- 
gian and removes the Higgs particle from the spectrum! If we are going to 
interpret the Yukawa coupling in the standard way, then we are not allowed 
to arbitrarily rescale the Higgs field and the limiting case leads to 

I Tr(MM*) - (Tr MM*)271/2 
tort = 2 Tr ~/M-t- -j -- co (18) 

as should be expected. The fermionic masses are in such a (nonlinear) model 
by means of Yukawa couplings in a way analogous to that of the standard 
model (Cosalbuoni et al., 1987; Cvetic and K6gerler, 1989, 1991; B6nish and 
K6gerler, 1992). The fermionic part of the Lagrangian given by equation 
(15) has the required form! 

Another interesting possibility is to consider a "more symmetric" 
version containing two SU(2) factors. Then, in order to have adjoint Higgs 
representations, one has to extend the spacetime by two points for each 
SU(2) factor and identify the two copies (Chamsedine et al., 1992, 1993a). 
If the mechanism suggested above really works, one gets a model that 
predicts several interacting facts (Cvetic and K6gerler, 1989, 1991; B6nish 
and K6gerler, 1992; B6nish et al., 1992). For example, the two- and 
three-vector-boson-production process in e +e-  collisions at x/~ = 500 GeV 
(NLC) will give precise bounds for the parameters (B6nish et al., 1992). 

Let us conclude by saying that the BESS mechanism is a necessary con- 
sequence of the noncommutative version of the standard model if there are 
many heavy generations. Such models are discrete counterparts of the CP" 
sigma model obtained in the Kaluza-~Klein program (Yoon, 1992) but are 
far more realistic: they predict interesting, experimentally verifiable facts. If 
we try to preserve the standard interpretation of the mass scale of the model 
(Connes, 1990; Connes and Lott, 1990), then our case corresponds to infini- 
tesimal distance between copies of ordinary four-dimensional spacetime. 
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